
The genome encodes thousands of genes whose pro
ducts enable cell survival and numerous cellular func
tions. The amounts and the temporal pattern in which 
these products appear in the cell are crucial to the 
pro cesses of life. Gene regulatory networks govern the 
levels of these gene products. A gene regulatory net
work is the collection of molecular species and their 
inter actions, which together control geneproduct 
abundance. Numerous cellular processes are affected 
by regulatory networks.

Innovations in experimental methods have ena
bled largescale studies of gene regulatory networks 
and can reveal the mechanisms that underlie them. 
Consequently, biologists must come to grips with 
extremely complex networks and must analyse and 
integrate great quantities of experimental data. Essential 
to this challenge are computational tools, which can 
answer various questions: what is the full range of 
behaviours that this system exhibits under different 
conditions? What changes are expected in the dynamics  
of the system if certain parts stop functioning? How 
robust is the system under extreme conditions? 

Various computational models have been developed 
for regulatory network analysis. These models can be 
roughly divided into three classes. The first class, logi
cal models, describes regulatory networks qualitatively. 
They allow users to obtain a basic understanding of the 
different functionalities of a given network under dif
ferent conditions. Their qualitative nature makes them 
flexible and easy to fit to biological phenomena, although 
they can only answer qualitative questions. To under
stand and manipulate behaviours that depend on finer 
timing and exact molecular concentrations, a second 

class of models was developed — continuous models. 
For example, to simulate the effects of dietary restriction 
on yeast cells under different nutrient concentrations1, 
users must resort to the finer resolution of continuous 
models. A third class of models was introduced follow
ing the observation that the functionality of regulatory 
networks is often affected by noise. As the majority of 
these models account for interactions between individual 
molecules, they are referred to here as singlemolecule 
level models. Singlemolecule level models explain the 
relationship between stochasticity and gene regulation.

Predictive computational models of regulatory net
works are expected to benefit several fields. In medi
cine, mechanisms of diseases that are characterized by 
dysfunction of regulatory processes can be elucidated. 
Biotechnological projects can benefit from predictive 
models that will replace some tedious and costly lab 
experiments. And, computational analysis may con
tribute to basic biological research, for example, by 
explaining developmental mechanisms or new aspects 
of the evolutionary process. 

Here we review the available methodologies for mod
elling and analysing regulatory networks. These meth
odologies have already proved to be a valuable research 
tool, both for the development of network models and 
for the analysis of their functionality. We discuss their 
relative advantages and limitations, and outline some 
open questions regarding regulatory networks, includ
ing how structure, dynamics and functionality relate to  
each other, how organisms use regulatory networks  
to adapt to their environments, and the interplay between 
regulatory networks and other cellular processes, such as 
metabolism.
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Stochasticity
The property of a system 
whose behaviour depends on 
probabilities. In a model with 
stochasticity, a single initial 
state can evolve into several 
different trajectories, each with 
an associated probability.

Modelling and analysis of gene 
regulatory networks
Guy Karlebach and Ron Shamir

Abstract | Gene regulatory networks have an important role in every process of life, including 
cell differentiation, metabolism, the cell cycle and signal transduction. By understanding the 
dynamics of these networks we can shed light on the mechanisms of diseases that occur 
when these cellular processes are dysregulated. Accurate prediction of the behaviour of 
regulatory networks will also speed up biotechnological projects, as such predictions are 
quicker and cheaper than lab experiments. Computational methods, both for supporting  
the development of network models and for the analysis of their functionality, have already 
proved to be a valuable research tool.
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Local state
At any time point, the value 
representing the status of an 
entity in a model is its (local) 
state. For example, the state of 
a protein may indicate whether 
it is phosphorylated or not  
(a Boolean value), or the time 
since its last phosphorylation 
(a continuous value). 

Synchronous model 
A model wherein the time 
steps at which the global state 
changes are discrete and 
(usually) equally spaced.  
On each step, all the states  
are updated simultaneously, 
depending on the model’s 
regulation functions and on the 
global state at the previous 
step. In asynchronous models, 
system changes are not 
confined to specific times and 
global states do not progress 
according to ‘a common clock’. 
Time is often continuous, and 
entities may change their 
states at different times.

Regulation function
A rule that determines the state 
of a specific entity in the model 
as a function of the states of 
some (other) entities. For 
example, several transcription 
factors may together regulate 
the expression of a gene. The 
set of entities whose states 
determine the state of entity X 
are entity X’s regulators. 

Global state
The combination of all the local 
states of a model at one time 
point. 

Steady state
A global state that, once 
reached, always repeats itself 
in a trajectory. Another 
important dynamic behaviour 
in biological systems is a cycle 
of global states. For example, 
the oscillations observed in the 
cell cycle.

Robustness
A measure of a model’s ability 
to withstand changes without 
changing its essential 
properties. For example, in 
network models, robustness 
can be quantified as the 
fraction of edge additions and/
or removals that change the 
trajectory that emanates from 
some initial state.

Logical models
The most basic and simplest modelling methodology is 
discrete and logicbased, and was introduced by Kauffman 
and Thomas2,3. The reconstruction of the regulatory 
network that controls the development of sea urchin 
embryos4,5 is a seminal example of the profound insights 
that qualitative examination of regulatory network models 
can provide. This work demonstrates how maternal cues 
initiate the activity of the regulatory network and how this 
network orchestrates the developmental process. logical 
models represent the local state of each entity in the system 
(for example, genes, proteins and small molecules) at any 
time as a discrete level, and the temporal development 
of the system is often assumed to occur in synchronous, 
discrete time steps. Entity levels are updated at each time 
step according to regulation functions (FIG. 1a). Discrete 
modelling allows researchers to rely on purely qualitative 
knowledge. Such models can be analysed using a broad 
range of well established mathematical methods. 

Boolean networks. Boolean regulatory networks were first 
presented by Kauffman2,6. In a Boolean network, an entity 
can attain two alternative levels: active (1) or inactive (0). 
For example, a gene can be described as expressed or not 
expressed at any time. The level of each entity is updated 
according to the levels of several entities, via a specific 
Boolean function. The 0–1 vector that describes the levels 
of all entities is called the system’s state, or the global state. 
It is assumed to change synchronously, such that at every 
time step, the level of each entity is determined according 

to the levels of its regulators at the previous time step and 
according to the regulation function (FIG. 1a).

Boolean networks were recently used to analyse the 
relationship between regulation functions and network 
stability in the yeast transcriptional network, using only 
the network’s structure7. According to this study, the 
network is stable when random regulation functions are 
used, and solution stability increases when the regulation 
functions are biologically meaningful. It also showed that 
Boolean networks do not correctly model the dynamics of 
a transcription factor that downregulates its own expres
sion, due to the model’s limited level of detail. Another 
problem is that it is computationally expensive to analyse 
the dynamics of large networks, as the number of global 
states is exponential in the number of entities. However, 
when the number of entities is small and only qualitative 
knowledge is available, Boolean networks can provide 
important insights, such as the existence and nature of 
steady states or network robustness.

To study the dynamics of cellcycle regulation in 
yeast, li et al.8 constructed a literaturebased Boolean 
network in which all the regulation functions are thresh-
old functions. This model generated trajectories with a high 
degree of overlap, most of which led into a path that cor
responded to the cellcycle phases of yeast. In addition, 
most small changes in the model did not significantly 
change its dynamic behaviour, indicating that it is robust. 
As the analysis relied on an exhaustive enumeration of all  
the possible trajectories, this method is only practical for 
small networks.

Figure 1 | Logical models. a | A Boolean network. Each of the entities a, b and c in the network can be in state 0 or 1. State 
transitions obey the regulation functions shown on the right, which describe the rules of the model. For example, if a is in 
state 1 and c is in state 0, at the next time step the state of b will be 0. Thin arrows indicate the regulators of each node. Time 
steps are represented by thick arrows. The global state of the model is the combination of the three entity states. The system 
cycles through the six global states. A sequence of consecutive global states is called a trajectory. b | A Petri net. The net 
contains ‘places’ (light blue circles) that are the model’s entities, and ‘transitions’ (rectangles) that constitute the regulation 
functions and define the model’s dynamics. Arcs connect input places to transitions, and transitions to their output places. 
Places that receive discrete values are called tokens (dark blue dots). A transition that is activated, or ‘fired’, reduces the 
tokens in its input places and increases the number of tokens in each of its output places. At any time step, every transition 
that has enough tokens in its input places may be fired. In the example, every transition consumes one token from every 
input place, and produces one token at every output place. Labels at thick arrows indicate which transition fired. Transitions 
t1 and t3 can be fired in alternation indefinitely, whereas no other transition can be fired after t2 has fired.
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Threshold function
A regulation function is a 
threshold function if it 
determines the state of the 
output entity by summing  
the states of its inputs and 
comparing the sum to some 
fixed value. For example, a 
gene upregulated if any two 
out of three transcription 
factors are active can be 
modelled by such a function.

Trajectory
In logical models, a trajectory  
is a sequence of global states 
that occur consecutively. In 
continuous models, a 
trajectory is the change of the 
level of an entity over time.

Markov chain
A stochastic process in which 
the next state depends only  
on the present state, regardless 
of the trajectory that led to the 
present state.

Heuristic
An algorithm for solving a 
problem that does not always 
provide an optimal solution  
to it. Heuristics are often used 
when it is impractical to obtain 
an exact optimal solution, and 
in many cases they provide 
satisfactory solutions.

Bayesian network
A probabilistic model that 
represents (in)dependencies 
between variables, taking the 
form of a directed acyclic 
graph. Often, both inference 
and learning can be carried  
out efficiently in such models. 
Dynamic Bayesian networks 
are an extension that describes 
dynamic behaviour.

Module
A set of genes that have 
identical regulation functions 
(and regulators). In other 
contexts, a module can also be 
a set of genes with a common 
function.

Inference
The selection of regulatory 
functions (or regulators) that 
best agrees with a dataset.

In many cases, the regulatory relationships between 
network components have not been established, and 
therefore need to be derived from experimental data. For 
any entity under a Boolean network model, both its regu
lators and a regulatory function that is consistent with a 
set of geneexpression profiles can be found efficiently, 
provided that the number of regulators of each entity 
does not exceed a set limit9. Such an algorithm is faster 
than a previous one proposed by Akutsu and colleagues10. 
lahdesmaki et al.9 also presented an algorithm for select
ing a set of candidate regulation functions in the presence 
of contradictory evidence, whereby each expression pro
file is associated with a certainty level (that is, a numerical 
value that expresses one’s confidence in the profile). This 
algorithm was tested by deriving regulation functions 
for 5 yeast cellcycle regulated genes using expression 
profiles of 733 candidate regulators11; the maximum 
number of regulators that together regulate a single gene 
was first set to 1, then 2 and finally 3. The analysis yielded 
a large number of regulation functions that were equally 
consistent with experimental data. Some of the suggested 
functions matched previous findings.

Probabilistic Boolean networks. often, due to insufficient 
experimental evidence or incomplete understanding of 
a system, several candidate regulatory functions may 
be possible for an entity. This raises the need to express 
uncertainty in the regulatory logic. Shmulevich et al.12, 13 
addressed this idea by modifying the Boolean network 
model such that an entity can have several regulation 
functions, each of which is given a probability based on 
its compatibility with prior data. At each time step, every 
entity is subjected to a regulation function that is ran
domly selected according to the defined probabilities12. 
Hence the model is stochastic and an initial global state 
can lead to many trajectories of different probabilities. The 
new model, the probabilistic Boolean network (PBN), 
generates a sequence of global states that constitutes a 
Markov chain14. For example, a PBN was used to model 
a 15 gene subnetwork that was inferred from human 
glioma expression data13. This analysis demonstrates that 
the stationary distributions of entities may indicate pos
sible regulatory relationships among them: entities that 
have the same states in a significant proportion of the  
global states are likely to be related. As the number of global  
states in the gene subnetwork was prohibitively large, one 
study13 estimated the stationary distribution by sampling 
the global states15.

MetaReg. An exponential number of global states makes 
it difficult to analyse the dynamics of all but tiny models. 
In some cases, analysis under steady state conditions turns 
out to be a practical goal. GatViks et al. 16 developed the 
metareg model, in which entities can have several levels  
(typically 3–5) and regulation functions are discrete. 
Two efficient heuristics were developed: the first detects a 
network’s steady states and the second selects regulation 
functions that are most consistent with these steady states. 
The former heuristic can be used to analyse the dynamics 
of the network, whereas the latter can complete or correct 
a literaturebased network. metareg was used to analyse 

the regulation of lysine biosynthesis in yeast and indicated 
previously unknown transcriptional controls of several 
metabolic enzymes.

To express uncertainty in regulation functions, Gat
Viks et al. 17 created a probabilistic version of the metareg 
model. In this model, an entity can have one of several 
possible regulation functions (with the same regulators), 
and probabilities that each one is correct. Technically, 
the model is represented as a factor graph (an expan
sion of Bayesian networks)18. Analogously to the model in  
ReF. 16, it can be subjected to steady state identification 
and optimization of regulation function18,19. It can also 
discover new regulatory relationships. The method has 
been improved20 to facilitate changes in the network 
structure (refinement) and inclusion of additional entities  
(expansion). Analysis of a network of 4 interconnected 
osmotic stressrelated yeast signalling pathways, which 
consists of 43 entities, along with 106 expression pro
files, identified novel regulatory modules and crosstalks 
between pathways. Thus, the model can correct and 
expand a known regulatory network.

Petri nets. The dynamics of a regulatory network can 
also be analysed using Petri nets21, nondeterministic 
models (FIG. 1b). An example of a question that users can 
ask with a Petri net is: how many transition sequences 
lead from global state A to global state B? The qualita
tive description of biochemical reactions using a Petri 
net is straightforward, and Petri net models are useful 
analysis tools for large metabolic networks22–24. Chaouiya 
et al. showed that Petri nets can also model regulatory 
networks using Boolean regulatory functions25, and that 
the metabolic and regulatory layers can be connected26. 
Steggles et al. proved that the synchronous dynamics of 
a Boolean network can be captured by a Petri net27 and 
demonstrated that uncertainty in the regulation func
tions can also be expressed by the model. Heuristics for 
analysing the dynamics of Petri nets have been studied 
extensively in the past 3 decades, and include detection 
of active pathways, testing if a given system state is reach
able and detecting state cycles28. Steggles et al. modelled 
the regulatory network of Bacillus subtilis sporulation 
using Petri nets and produced a behaviour that is in good 
agreement with existing literature27. For example, when 
initializing the system to a global state that corresponds 
to vegetative growth and activating the sporulation 
signal, the dynamics of the system lead to a state that 
corresponds to sporulation. This model also correctly 
predicted the sporulation capabilities of mutants.

Inference of particular network properties. In certain 
cases, incomplete information about a regulatory net
work can be used to infer topological features and regula
tory interactions of the network. Due to the noisy nature 
of biological experiments, inference is usually based on 
a probabilistic framework that integrates experimental 
data in a network context. Here we briefly describe some 
static probabilistic models that infer properties of regula
tory networks. These models do not describe in full the 
regulation of each entity under every possible condition, 
and do not describe dynamic processes (the concept of 
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Discretization
A process that transforms 
continuous numerical values 
into discrete ones. For example, 
real-valued measurements can 
be discretized to 0,1 or 2, 
corresponding to low, medium 
and high levels.

trajectory is not defined for them), but provide higher 
level, lower resolution modelling and analysis (ReF. 29 is 
an excellent source on probabilistic inference). 

module networks, introduced by Segal and col
leagues, is a model that infers the regulation logic of 
gene modules given geneexpression data30. A regula
tion logic is represented by a decision tree, in which a 
path from the root to a leaf is determined by the up 
or downregulation of regulatory modules, and a leaf 
determines the expression level of the corresponding 
genes. module networks were tested with experimental 
data and correctly predicted some regulatory mod
ules. Friedman et al. introduced Bayesian networks as 
a probabilistic tool for the identification of regulatory 
genes using highthroughput experimental data29 and 
showed that they can reproduce certain known regula
tory relationships31,32. Physical network models combine 
protein–DNA interactions, protein–protein inter actions 
and knockout experiments for the discovery of regu
latory interactions. The network structure of these 
models predicted knockout effects correctly33. Yeang and 
Vingron integrated perturbation data with knowledge 
from the literature into a joint model of regulation and 
metabolism and created a framework for the prediction 
of regulatory interactions and pathways34. They verified 
the predictive power of their model on the regulatory 
networks that govern the metabolism of glucose in 
Escherichia coli and found that the use of a joint model 
explains more perturbations than a regulatory network 
would explain alone. In all the probabilistic inference 
models above, predicted properties are assigned a cer
tainty level. A cutoff for deciding which features will 
be selected for further analysis can then be determined. 
Examples for using cutoff criteria for networkfeature 
selection can be found in ReFS 7,32,35.

Continuous models
Biological experiments usually produce real, rather than 
discretevalued, measurements. Examples include reac
tion rates, cell mass, cellcycle length and geneexpression 
intensities36–39. logical models require discretization of the 
realvalued data, which reduces the accuracy of the data. 
Continuous models, using realvalued parameters over a 
continuous timescale, allow a straightforward comparison 
of the global state and experimental data and can theoreti
cally be more accurate. In practice, however, quantitative 
measurements are almost always partial (that is, they 
cover only a fraction of the system’s entities). Therefore, 
some of the parameters of continuous models are usu
ally based on estimations or inference. Below we describe 
some types of continuous models and the predictions that 
they can generate. 

Continuous linear models. The defining property of linear 
models is that each regulator contributes to the input of 
the regulation function independently of the other regula
tors, in an additive manner. In other words, the change in 
the level of each entity depends on a weighted linear sum 
of the levels of its regulators. This assumption allows a 
high level of abstraction and efficient inference of network 
structure and regulation functions.

Timeseries data usually contain many more genes than 
time points. This presents a difficulty in reverse engineer
ing a network’s structure and regulation functions. Yeung 
et al.40 used a linear model and singular value decomposi
tion41 to generate a family of candidate networks that are 
consistent with a given dataset, thus compensating for 
this deficiency in time points. The network that is most 
consistent with prior knowledge is selected. The authors 
demonstrated in simulations that this approach is effec
tive in dealing with shortages of data. Weaver et al.42 
described a model in which the expression of each gene 
is regulated by a ‘squashing’ function that takes as input 
a weighted linear sum of regulator levels, and presented 
an algorithm for reverse engineering real networks under 
these assumptions. one recent study adopted the linear 
framework to create a model of a regulatory network that 
is subjected to an arbitrary number of perturbations and 
studied multiple perturbation scenarios using simulated 
data and a singleperturbation scenario using experimen
tal data43. Another study added time delays to regulatory 
interactions44, which can be used to infer the duration of 
protein synthesis.

linear models do not require extensive knowledge 
about regulatory mechanisms and can be used to obtain 
qualitative insights about regulatory networks, the 
simplest example being detection of novel regulations. 
However, when higher sensitivity to detail is desired, 
more complex models are preferable.

Models of transcription factor activity. The linear model 
is a crude description of the process of gene expression, 
and as such it cannot provide answers to subtle questions 
such as: how does the affinity of a transcription factor to 
a target promoter affect the network? Nachman et al.45  
created a finelevel model of gene regulation. In their 
model, entities correspond to either genes or transcrip
tion factors, and levels represent mrNA abundance or 
transcription factor activity, respectively. All the regu
lators are transcription factors. The levels of genes are 
determined by realvalued, nonlinear regulation func
tions that take the michaelis–menten form46. The level of 
a gene is thus determined by that function together with 
the mrNAdecay rates. The timedependent transcription 
factor activities are inferred from microarray timeseries 
data using dynamic Bayesian networks47,48. An efficient 
heuristic aims to discover new regulators and regulatory 
relationships. Given an established regulatory network of 
141 yeast cellcycle genes, the heuristic successfully pre
dicted the activity levels of the 7 regulators that controlled 
this network. In addition, it proposed novel regulatory 
relationships that improved the explanatory power of  
the model. moreover, when given the entities, but not the  
network structure, as input, this method identified  
the seven regulators.

Shamir and Tanay developed a different model for 
identifying transcription factor–gene regulations49. The 
method relies on an efficient algorithm that infers trans
cription factor activity under the assumption that it is a 
monotone increasing function of both the transcription 
factor–promoter affinity and the transcription factor  
dosage. Transcription factor–promoter affinities are 
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kinetics of an enzymatic 
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equations that describe the 
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the involved molecular species 
under some simplifying 
assumptions.

inferred based on analysis of the promoters of the regu
lated genes. The model was applied to 140 genes of the 
galactose system in yeast, and inferred transcription fac
tor activities that were in accordance with the literature. 
Two putative novel transcription factors, along with their 
genomic binding sites, were suggested. This demonstrates 
that the integration of multiple datasets can yield addi
tional predictions that would be difficult to obtain from 
either dataset alone. The increased prediction power is 
obtained by the algorithm’s ability to link different, but 
related, biological phenomena, in this case cisregulatory 
elements and mrNA abundance. 

recently, Pan et al. extended the model developed by 
Nachman and colleagues by integrating genome sequence 
data50. Although these models offer a detailed description 
of regulation and provide inference algorithms, they do 
not directly incorporate interactions between regulatory 
entities. A similar methodology that uses discrete global 
states was suggested for inferring transcription factor 
activities based on the complete regulatory structure51. 
The model of Segal et al.52 reproduced expression pat
terns that are generated by maternal and zygotic factors 
in the early Drosophila melanogaster embryo and provided 
interesting insights about the regulatory interactions of 
this system.

Ordinary differential equations. A more general, detailed 
model of regulation can be described by ordinary differ
ential equations (oDEs) (FIG. 2). These equations describe 
the (instantaneous) change in each entity as a function 
of the levels of some network entities. For simple oDE 
systems, an analytical solution can be formulated and 
the resulting set of algebraic equations then describes the 
change in entity levels over time. (ReF. 46 provides a good 
overview for the use of oDEs in biological context and 
gives some illustrative examples). The Hill and Michaelis–
Menten functions are examples of such analytical solutions 
of small systems. larger networks, which often use these 
functions in addition to linear and bilinear functions, 
practically always require a numerical solution.

The oDE approach provides detailed information about 
the network’s dynamics, but requires highquality data on  
kinetic parameters and it is therefore currently applicable 
to only a few systems. The idea of using oDEs for model
ling regulatory networks was suggested several decades 
ago53. Here we give some recent examples for modelling 
the dynamics of regulatory networks using oDEs.

li et al. used oDEs to evaluate their model for the 
cellcycle regulation in Caulobacter crescentus54. This bac
terium divides asymmetrically into two morphologically 
distinctive cells, one of which, the stalked cell, is identical 
in form to the parent55–58. Their implementation follows 
the network dynamics from the parent cell to the stalked 
daughter cell. Entities correspond to protein concentra
tions, to the constriction ring at the midcell plane, to the 
process of DNA synthesis and to gene promoters. The 
system contains 16 equations (one for each variable), and 
these make use of 44 constants that were initially retrieved 
from the literature and then adjusted by trial and error. 
In tests in wildtype and 16 mutant strains, the model’s 
simulations agreed with experimental measurements.

Chen et al. used the same approach to model the cell
cycle regulatory network in yeast59. In their model, entity 
levels corresponded to protein concentrations, cell mass, 
DNA mass, the state of the mitotic spindle and the state 
of the emerging bud from which the daughter cell was 
formed. The change in cell mass is assumed to depend 
only on the current cell mass. Therefore, the mass at divi
sion time is determined by the duration of the cell cycle. 
In total, 36 equations and 148 constants were used. After 
manual fitting, the model generated trajectories that  
reasonably matched the parent and daughter cellcycle 
durations, the lengths of the G1, G2, S and m phases, and 
some of the experimentally determined ratios between 
groups of regulatory proteins. moreover, 120 out of 131 
simulated mutant strains had properties that were con
sistent with experimentally observed properties, including 
viability, growth rate, size at birth and size at budding.

Thus, oDE models can generate predictions that 
may subsequently be compared to cellular phenotypes. 
Additional examples for modelling with oDEs include 
the Arabidopsis thaliana circadian system60 and osmo
regulation in yeast61. more restricted types of oDE have 
also been proposed for modelling regulatory networks62,63. 
These are usually more abstract, require less detail dur
ing the modelling process and can be subjected to more 
powerful analysis.

Figure 2 | ordinary differential equation model. a | A network of three genes is 
modelled using ordinary differential equations (ODEs). Reaction rate constants are 
denoted by ‘k’. b | The regulatory relations are depicted graphically. c | The trajectories of 
the model. Each equation shows the change in the level of a gene as a difference of its 
synthesis and degradation. Gene 1 is constitutively expressed, and is repressed by 
gene 3. Therefore, its level may reach a maximal rate of increase (k

1,s
; ‘s’ stands for 

synthesis) when the level of gene 3 is 0, in which case k
1,s

 will be multiplied by 1. When the 
level of gene 3 is non-zero, the level of gene 1 rises slower than k

1,s
. Transcription of gene 

2 is activated by gene 1. This is expressed in the second equation of panel a, in which 
gene 2 level rises as a Michaelis–Menten function of the level of gene 1. Similarly, 
transcription of gene 3 is activated when both gene 1 and gene 2 levels are non-zero, and 
this relationship is given in the third equation of panel a. Degradation is modelled as a 
first-order reaction with rate constants k

i,d
 (in which ‘i’ can be 1, 2 or 3). This formulation 

assumes that every transcript is immediately translated, and therefore the synthesis 
constants k

i,s
 refer to both transcription and translation. According to simulation 

(bottom), the system stabilizes in a steady state at about 4.5 time units. The values of the 
rates in the simulations were: k

1,s
=k

2,s
=2; k

3,s
=15; k

1,d
=k

2,d
=k

3,d
=1; k

2,1
=k

3,1
=k

3,2
=1; and 

k
1,3

=100. The initial levels were all zero. Equations were solved using  DESSolver v1.7 and 
the fourth order Runge–Kutta method.
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Solution space
The set of possible solutions to 
an optimization problem. In the 
context of flux balance 
analysis, the solution space 
corresponds to different 
combinations of fluxes that 
optimize the objective function 
and that satisfy the constraints.

Regulated flux balance analysis. The cellcycle oDE 
models incorporate cell growth and division by consider
ing the progression of regulatory processes. However, in 
reality, changes in cell mass depend on metabolic activity. 
A complete picture of cellular regulation must take into 
account metabolic reactions and their interplay with the 
regulatory layer. For example, in the lac operon, a regu
latory protein, the lac repressor, is regulated by a metabo
lite, lactose64. regulated flux balance analysis (rFBA)65,66 
is a modelling approach that aims to integrate regulation 
and metabolism. rFBA is an extension of FBA67 (see 
below; for more information on FBA, see ReFS 67,68). 

A major problem in using oDEs for describing 
biochemical reactions is the scarcity of experimental 
data on rate constants. FBA addresses this problem by 
assuming that the network is in a steady state and there
fore that the total concentration of each substance does 
not change. under this assumption, a system of oDEs 
is transformed into a system of linear equations, and its 
rates can be obtained by solving a linear programming 
problem that optimizes a certain objective function, for 
example, cellular growth. Such optimization problems 
can be solved efficiently. Further constraints are added 
to narrow the solution space. For example, the rate con
stants are restricted according to the catalytic capacities 
of metabolic enzymes69. The method has been success
fully used to model large metabolic networks covering 
the nearcomplete metabolism of several species70–72.

rFBA extends FBA by adding a layer of Boolean regu
latory entities. For example, transcription factors that 
can be active or inactive and that can regulate enzymes 
that catalyse metabolic reactions (FIG. 3). Hence, it models 
interactions of both logical and continuous entities. The 
reactions of FBA are subjected to Boolean regulation 
functions that can set the reaction rates to zero if the  
regulatory logic dictates inactivation. For example,  
the production rate of a metabolite can drop to zero 
if the enzyme that produces it is not transcribed. The 
entities of the regulatory layer may also regulate each 
other via Boolean functions, and can also depend on dis
cretized levels of metabolic entities. This regulation can 
be associated with a time delay. For instance, a Boolean 
entity that corresponds to a transcription factor can 
switch from 0 to 1 after a delay due to transcription and 
translation times. 

Covert and Palsson74 used rFBA to model the regu
lation of the central metabolic network of E. coli, which 
includes 149 genes, 16 regulatory proteins, 73 enzymes, 
45 transcriptional regulations and 113 biochemical 
reactions. Growth predictions agreed well with experi
mental measurements in 106 out of 116 combinations of 
mutant strain–growth medium (measurements included 
viability, metabolite concentrations, cell mass and gene
expression values). A more comprehensive model that 
accounts for 1,010 genes was later introduced by Covert 
and colleagues75.

Figure 3 | regulated flux balance analysis model. The model shown contains three regulatory genes (squares) that regulate 
a metabolic layer. Metabolites are represented by circles, and metabolic fluxes by arrows that connect metabolites. Fluxes are 
denoted as v

1
–v

8
. The objective function that must be maximized is v

7
+v

8
. The metabolic flux v

7
 regulates r

1
. If it is non-zero,  

r
1
 becomes active. Otherwise, r

1
 becomes inactive. The regulators r

2 
and r

3
 regulate the flux v

5
. When r

2
 is not active and r

3
 is 

active, v
5
 is set to zero. Otherwise v

5
 is not constrained. The regulation functions are shown. When v

5
 is not constrained, a 

maximal value of v
7
+v

8
 is obtained by fluxes of magnitude 0.2 in all reactions, except v

6
, the value of which remains 0. This is 

one of several possible solutions for the linear programming problem (they are referred to together as the solution space). 
When v

5
 is constrained to 0 by the regulatory layer, v

7
 must also become 0, and, hence, v

8
 becomes the only outgoing flux.  

The trajectory cycles through five global states. The stoichiometric matrix describes the metabolites that each reaction 
consumes and produces. The columns correspond to reactions, and the rows to metabolites. For example, the third column 
means that the third reaction consumes one molecule of metabolite 1 for each molecule of metabolite 2 that is produced.
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Barrett and Palsson76 created an algorithm that uses 
rFBA to design a series of experiments for reverse engi
neering a regulatory network. Before every lab experi
ment, the algorithm chooses a set of transcription factors 
that will be knocked out and two growth environments 
between which the cells will be shifted. The goal is to mini
mize the total number of experiments. Given probabilistic 
knowledge about regulatory interactions, the algorithm 
simulates cell growth for every possible combination of 
environments and knockout sets, and selects one under 
which the largest number of novel regulatory interactions 

are most likely to occur. The lab experiment that follows 
applies the suggested perturbations and environmen
tal shift, generates an expression profile and verifies all 
the indicated regulatory interactions using chromatin 
immunoprecipitation (ChIP). Experimentally verified 
interactions are added to the model, and the process 
can be repeated. The algorithm’s selections showed good 
agreement with the decisions of scientists in the recon
struction of an E. coli network. A similar methodology 
was proposed77 and tested experimentally33,78 for selecting 
experiments in Boolean network reconstruction.

Figure 4 | Single-molecule level model. a | Stochastic model for a negative-feedback loop. The system contains a single 
gene, the product of which represses its own promoter. The diagram shows the different interactions between molecules, 
each represented by a different entity. For example, the transcription complex is represented by a distinct entity for every 
location of the transcription complex on the open reading frame (ORF). Arrows represent transformations of molecular 
species that occur during a reaction. The tails of the arrows point to the substrates and the arrowheads point to the 
products. For example, the dissociation of the complex RNA polymerase + promoter is represented by the two arrows 
pointing from the complex to RNA polymerase and to the naked promoter (top left). b | Two possible trajectories for the 
mRNA and protein entities of the model. In the first trajectory, a transcription event occurs, followed by a translation 
event. Next, several ribosomes initiate translation consecutively and produce two additional proteins (the model allows 
this as initiations of translation do not consume an mRNA molecule, as is depicted in panel a). At the same time, the only 
transcript degrades. The last event is protein degradation. In the second trajectory, a transcript is produced at an earlier 
time, and also degrades earlier. Three proteins are generated and then gradually degrade. At about 90 seconds, RNA 
polymerase manages to bind the promoter and produces a second transcript. Simulations performed using STOCKS 2.0 
(ReF. 138). The values of the rates in seconds–1 were: 100 for elongation of transcript; 30 for elongation of the polypeptide 
chain; 1 for termination of transcription and/or translation; 0.04 for transcript degradation; 0.025 for protein degradation; 
and 0.1 for all other reactions.  Transcript size was 100, and polypeptide chain size was 30.  Initial levels were 1 promoter. 
The initial number of RNA polymerase molecules is selected from the normal distribution N(35,3.5), and the initial number 
of ribosome molecules is selected from the normal distribution N(15,3.5), and 0 for all other entities.
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The rFBA approach offers a detailed description of 
the metabolic layer and also accounts for the interplay 
between regulation and metabolism. Although the model
ling of the regulatory layer is qualitative and less detailed 
than in other continuous approaches, this is compensated 
for by the model’s capability to infer metabolic fluxes. (For 
another example of rFBA, see ReF. 79 for an analysis of the 
regulation of metabolism in yeast.) Shlomi et al. extended 
rFBA to study the regulation of metabolism in the steady 
state80. In their model a steady state is obtained by solving 
a mixed integer linear programming problem rather than 
by following a trajectory. A different constraintbased 
approach that allows analysis of the regulatory network 
in various environments was introduced by Gianchandani 
and colleagues81.

Single-molecule level models
Every biological network is composed of stochastic com
ponents, and therefore it may manifest different behav
iours, even starting from the same initial conditions82,83. 
When the number of involved molecules of each species 
is large, the law of mass action46 can be used to accurately 
calculate the change in concentrations, and little or no 
stochastic effect is observable. However, when the number 
of molecules is small, significant stochastic effects may 
be seen (FIG. 4). This is particularly true for regulatory 
networks, in which the number of regulatory molecules 
is often low84–87. recently, singlecell experimental assays 
demonstrated the stochastic behaviour of the processes 
of transcription88–90 and translation89,91,92. Here we present 
models that incorporate the stochastic nature of regu
lation by accounting for the fluctuations that occur on 
the molecular level (reviewed in ReF. 93).

Gillespie’s stochastic simulation algorithm. mcAdams 
and Arkin94 showed that fluctuations in time intervals 
between biochemical reactions, and consequently in the 
occurrence times of regulatory events, can be expressed 
by a model that follows biochemical reactions at single
molecule resolution. The model is based on Gillespie’s  
stochastic simulation algorithm (SSA)95,96. SSA takes as 
input the initial number of molecules of several species (for 
example, mrNAs and proteins) and reactionprobability 
constants, and simulates the dynamics of the system, reac
tion by reaction. A reaction probability is the probability 
that the necessary combination of specific molecules will 
participate in that reaction in an infinitesimal time inter
val. For example, consider the phosphorylation reaction: 

Kinase–phosphate + target → kinase + target–phosphate
c1

The reaction probability c1.dt is the probability that a 
specific kinase molecule will phosphorylate a specific 
protein molecule in the infinitesimal time interval dt. 
Gillespie has shown how reaction probability constants 
can be derived from deterministic reaction rates.

The basic assumption of the algorithm is that the sys
tem is ‘well stirred’ — that is, that each molecule always 
has an equal chance of being anywhere in the system’s 
volume. This assumption applies, for example, if most 
of the collisions between molecules are nonreactive. 
Although it overlooks some biological processes that 
affect regulation, such as diffusion97 and transporta
tion98,99, the algorithm proved useful in describing the 
time evolution of several small regulatory networks and 
mechanisms100–104. BOX 1 provides an example of how SSA 
can be used to analyse a biological system.

Approximations to SSA. Although Gisbon and Bruck 
introduced a way to speed up SSA105, SSA still requires 
extensive computational resources because it simulates 
every individual reaction. Consequently, SSA is not ideal 
for modelling largescale networks. Therefore, researchers 
further modified SSA, sacrificing a certain level of detail 
for the sake of faster simulation.

τleaping is a variation of SSA that trades accuracy for 
efficiency106. Instead of generating every single reaction, 
τleaping ‘leaps’ over a time interval of size τ and randomly 
selects the number of reactions of each type that occurred 
in this interval. Gillespie suggested106 a procedure for 
selecting τ that was later improved and implemented as 
part of a stochastic simulation toolkit107 (ReF. 97 describes 
in detail different SSA approximation methods). When 
some of the reactions can be described using oDEs, a more 
efficient strategy is to separate reactions into two regimes:  
discrete and continuous (see, for example, ReFS 108, 

109). The integration algorithm of ECell version 3 (see 
Supplementary information S1 (table)) combines multiple 
standalone algorithms (for example SSA and a numerical 
oDE solver110). The use of effective reactions, which amal
gamate several simple reaction steps into a single complex 
step, is a method for abstraction and increasing simulation 
speed111,112. reaction steps can also be eliminated by apply
ing a steady state assumption113. Additional approximation 
methods are described in ReF. 93.

 Box 1 | Stochastic simulation of phage λ development

Phage λ is a bacteriophage that infects Escherichia coli cells. A network of regulatory 
interactions between phage molecules determines if the phage selects the lysogenic 
pathway or the lytic one137. When a phage chooses the lytic pathway, the concentration 
of the Cro protein in the host is relatively high and the concentration of the CI protein 
is relatively low. If the lysogenic pathway is chosen, the opposite is true. McAdams and 
Arkin simulated the pathway-decision process by using an stochastic simulation 
algorithm (SSA) under several simplifying assumptions (for example, that the host’s 
housekeeping molecules are present in constant concentrations)104. Their model 
defined 26 reaction types, 40 parameters and 18 molecular species (not including 
complexes). For example, elongation of a polypeptide chain is a single reaction with 
the same rate for all amino acids. They view the DNA as one species, although the 
position of RNA polymerase affects transcription rate, and consider the translation of 
any mRNA transcript by the ribosome as a single reaction type. The simulations showed 
that the trajectories of CI and Cro concentrations may vary substantially as a result  
of the intrinsic stochasticity of the system. Furthermore, the fraction of lysogens as a 
function of the average number of phages per host was in good accordance with 
experimental data.

This work demonstrated, for the first time, that a real regulatory network can 
generate profoundly different trajectories due to stochasticity. Subsequently, 
Weinberger et al.103, on the basis of experiments and simulations, proposed that a 
positive-feedback loop created by the Tat protein and affected by stochasticity 
generates fluctuations in latency time. Schultz et al.102 used SSA to explain the 
transition between vegetation and competence in Bacillus subtilis. Gonze and 
Golbeter100 investigated the effects of noise on circadian clocks and the conditions 
that promote their robustness. More efficient methods are needed to carry out 
simulations of larger networks.
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Summary
The introduction of novel and powerful experimental 
methods for studying gene regulation has created an 
upsurge of interest in modelling regulatory networks. 
In this article, three approaches to modelling were high
lighted and some representative examples were discussed. 
We also discussed key differences among these approaches 
and rules of thumb for selecting an appropriate model 
(FIG. 5). Available modelling tools from each approach, 
as well as relevant databases, are listed in Supplementary 
information S1 (table).

A model’s quality can be assessed by how similar 
its predictions are to experimental data. If two models 
generate predictions that match the same data equally 
well, then the simpler model is preferable, because it can 
be better understood and is less prone to overfitting. 
When available observations are qualitative in nature, 
logical models can be accurate and have the advantage 
of having a modest number of global states. This enables 

more intuitive and efficient analysis methods. When 
data include realvalued measurements, such as time74 or 
space55,114, realvalued predictions can be more accurate. 
In addition, the simplified dynamics of logical models 
are often less appropriate for the complex behaviours that 
generate such measurements, and this motivates the use 
of continuous models or models that combine logical and 
continuous approaches.

The stochastic nature of gene expression influences 
the dynamics of regulatory networks, and this aspect 
is usually not modelled by continuous approaches115. 
Singlemolecule level models are the most detailed and 
can explain stochastic behaviour in several scenarios. 
While accounting for the full complexity of gene regu
lation, singlemolecule level models are also the hardest 
to study analytically, and stochastic experimental data are 
currently very scarce.

limited availability of reaction rate constants and 
incomplete understanding of gene regulation are major 
impediments for building accurate models. In this respect, 
lower model resolution is an advantage, as it requires 
fewer parameters and less detailed understanding of the 
regulatory mechanisms116–123. Analytical methods that 
cope with these problems were developed for logical and 
continuous models, and some of these were presented 
above. As a brute force alternative, the space of potential 
parameters can be scanned for certain dynamic behav
iours, provided that the model is both computationally 
simple and has a sufficiently small number of global 
states. For example, one study103 searches the parameter 
space of a continuous model and derives molecular level 
parameters from results. Another problem associated 
with building accurate models is that experimental data 
are usually derived from a population of cells that needs to 
be synchronized124. The mean behaviour of a population 
(for example, as measured by gene expression) does not 
always exhibit fluctuations that can be observed at a single 
cell level. In such cases, the accuracy of deterministic and 
stochastic approaches is equally limited.

Despite substantial progress in modelling regulatory 
networks over the past decade, nature’s design of regula
tory networks confronts us with many open questions. 
Although it is clear that structure alone does not deter
mine network dynamics125,126, the role of different network 
architectures in generating dynamic behaviours127,128, and 
the evolutionary processes that produced them, are far 
from understood. And, what is the effect of noise on 
regulatory networks? General strategies for overcoming 
stochastic effects are known82, but a largescale quantita
tive study has not yet been performed. Stochastic effects 
can also give rise to evolutionary advantages in a popu
lation by creating diversity129,130. Characterization of the 
beneficial role of stochasticity remains a future challenge. 
Notably, stochastic effects have been extensively studied 
in other types of dynamic biological systems, including 
population genetics and theoretical ecology131–134.

our current picture of how regulation is carried out is 
probably still missing several significant pieces. more exper
imental work is needed, and we must incorporate results  
into improved network models. Experimental design  
approaches76–78 will help us to select the most efficient  

Figure 5 | a schematic comparison of regulatory network models. Models are listed 
along an imaginary scale, in which the level of detail of the models decreases, and the 
amount of detail increases, from left to right. Several pertinent criteria are indicated 
below the scale. Boolean networks are the purest form of logical models. They are 
highly abstract and hence require the least amount of data, but at the same time can 
display only qualitative dynamic behaviour. MetaReg is closer to biological reality 
because it can express intermediate regulator concentrations and accommodate 
probabilities, but requires more knowledge about the network and is limited to analysis 
of steady states. Petri nets can reveal finer detail to metabolic and signalling networks, 
and can therefore be used to describe integrated regulatory and metabolic/signalling 
networks and handle some dynamics. The analysis Petri nets offer is still qualitative. 
Regulated flux balance analysis (rFBA) produces metabolic predictions that can be 
compared to experimental measurements, but requires biochemical knowledge and is 
more challenging to analyse. Linear differential equations can model and predict 
experimentally observed concentrations of regulatory entities, and possess more 
detailed dynamics than the former models. General ordinary differential equations 
(ODEs) are more consistent with biochemical mechanisms than linear ODEs, but are 
harder to analyse. Single-molecule level models, the most detailed, can capture 
stochasticity, but are computationally expensive. To deal with this computational 
burden, approximations to stochastic simulation algorithms (SSAs) were developed, 
which sacrifice some detail for better performance. Methods that infer particular 
properties (not shown) can fall anywhere on the left half of the scale, depending on  
the properties of the chosen model. 
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set of experiments. In addition to understanding regu
lation as a standalone process, models for the interplay 
of regulation with other processes, for example meta
bolism and cell–cell signalling, need to be created135,136.  

The benefits of accurate, largescale regulatory network 
models for medicine and biotechnology provide a strong 
incentive for cooperation between experimentalists and 
computational scientists.
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	Abstract | Gene regulatory networks have an important role in every process of life, including cell differentiation, metabolism, the cell cycle and signal transduction. By understanding the dynamics of these networks we can shed light on the mechanisms of diseases that occur when these cellular processes are dysregulated. Accurate prediction of the behaviour of regulatory networks will also speed up biotechnological projects, as such predictions are quicker and cheaper than lab experiments. Computational methods, both for supporting the development of network models and for the analysis of their functionality, have already proved to be a valuable research tool.
	Logical models
	Figure 1 | Logical models. a | A Boolean network. Each of the entities a, b and c in the network can be in state 0 or 1. State transitions obey the regulation functions shown on the right, which describe the rules of the model. For example, if a is in state 1 and c is in state 0, at the next time step the state of b will be 0. Thin arrows indicate the regulators of each node. Time steps are represented by thick arrows. The global state of the model is the combination of the three entity states. The system cycles through the six global states. A sequence of consecutive global states is called a trajectory. b | A Petri net. The net contains ‘places’ (light blue circles) that are the model’s entities, and ‘transitions’ (rectangles) that constitute the regulation functions and define the model’s dynamics. Arcs connect input places to transitions, and transitions to their output places. Places that receive discrete values are called tokens (dark blue dots). A transition that is activated, or ‘fired’, reduces the tokens in its input places and increases the number of tokens in each of its output places. At any time step, every transition that has enough tokens in its input places may be fired. In the example, every transition consumes one token from every input place, and produces one token at every output place. Labels at thick arrows indicate which transition fired. Transitions t1 and t3 can be fired in alternation indefinitely, whereas no other transition can be fired after t2 has fired.
	Continuous models
	Figure 2 | Ordinary differential equation model. a | A network of three genes is modelled using ordinary differential equations (ODEs). Reaction rate constants are denoted by ‘k’. b | The regulatory relations are depicted graphically. c | The trajectories of the model. Each equation shows the change in the level of a gene as a difference of its synthesis and degradation. Gene 1 is constitutively expressed, and is repressed by gene 3. Therefore, its level may reach a maximal rate of increase (k1,s; ‘s’ stands for synthesis) when the level of gene 3 is 0, in which case k1,s will be multiplied by 1. When the level of gene 3 is non-zero, the level of gene 1 rises slower than k1,s. Transcription of gene 2 is activated by gene 1. This is expressed in the second equation of panel a, in which gene 2 level rises as a Michaelis–Menten function of the level of gene 1. Similarly, transcription of gene 3 is activated when both gene 1 and gene 2 levels are non-zero, and this relationship is given in the third equation of panel a. Degradation is modelled as a first-order reaction with rate constants ki,d (in which ‘i’ can be 1, 2 or 3). This formulation assumes that every transcript is immediately translated, and therefore the synthesis constants ki,s refer to both transcription and translation. According to simulation (bottom), the system stabilizes in a steady state at about 4.5 time units. The values of the rates in the simulations were: k1,s=k2,s=2; k3,s=15; k1,d=k2,d=k3,d=1; k2,1=k3,1=k3,2=1; and k1,3=100. The initial levels were all zero. Equations were solved using  DESSolver v1.7 and the fourth order Runge–Kutta method.
	Figure 3 | Regulated flux balance analysis model. The model shown contains three regulatory genes (squares) that regulate a metabolic layer. Metabolites are represented by circles, and metabolic fluxes by arrows that connect metabolites. Fluxes are denoted as v1–v8. The objective function that must be maximized is v7+v8. The metabolic flux v7 regulates r1. If it is non-zero, r1 becomes active. Otherwise, r1 becomes inactive. The regulators r2 and r3 regulate the flux v5. When r2 is not active and r3 is active, v5 is set to zero. Otherwise v5 is not constrained. The regulation functions are shown. When v5 is not constrained, a maximal value of v7+v8 is obtained by fluxes of magnitude 0.2 in all reactions, except v6, the value of which remains 0. This is one of several possible solutions for the linear programming problem (they are referred to together as the solution space). When v5 is constrained to 0 by the regulatory layer, v7 must also become 0, and, hence, v8 becomes the only outgoing flux. The trajectory cycles through five global states. The stoichiometric matrix describes the metabolites that each reaction consumes and produces. The columns correspond to reactions, and the rows to metabolites. For example, the third column means that the third reaction consumes one molecule of metabolite 1 for each molecule of metabolite 2 that is produced.
	Figure 4 | Single-molecule level model. a | Stochastic model for a negative-feedback loop. The system contains a single gene, the product of which represses its own promoter. The diagram shows the different interactions between molecules, each represented by a different entity. For example, the transcription complex is represented by a distinct entity for every location of the transcription complex on the open reading frame (ORF). Arrows represent transformations of molecular species that occur during a reaction. The tails of the arrows point to the substrates and the arrowheads point to the products. For example, the dissociation of the complex RNA polymerase + promoter is represented by the two arrows pointing from the complex to RNA polymerase and to the naked promoter (top left). b | Two possible trajectories for the mRNA and protein entities of the model. In the first trajectory, a transcription event occurs, followed by a translation event. Next, several ribosomes initiate translation consecutively and produce two additional proteins (the model allows this as initiations of translation do not consume an mRNA molecule, as is depicted in panel a). At the same time, the only transcript degrades. The last event is protein degradation. In the second trajectory, a transcript is produced at an earlier time, and also degrades earlier. Three proteins are generated and then gradually degrade. At about 90 seconds, RNA polymerase manages to bind the promoter and produces a second transcript. Simulations performed using STOCKS 2.0 (ref. 138). The values of the rates in seconds–1 were: 100 for elongation of transcript; 30 for elongation of the polypeptide chain; 1 for termination of transcription and/or translation; 0.04 for transcript degradation; 0.025 for protein degradation; and 0.1 for all other reactions.  Transcript size was 100, and polypeptide chain size was 30.  Initial levels were 1 promoter. The initial number of RNA polymerase molecules is selected from the normal distribution N(35,3.5), and the initial number of ribosome molecules is selected from the normal distribution N(15,3.5), and 0 for all other entities.
	Single-molecule level models
	Box 1 | Stochastic simulation of phage λ development
	Figure 5 | A schematic comparison of regulatory network models. Models are listed along an imaginary scale, in which the level of detail of the models decreases, and the amount of detail increases, from left to right. Several pertinent criteria are indicated below the scale. Boolean networks are the purest form of logical models. They are highly abstract and hence require the least amount of data, but at the same time can display only qualitative dynamic behaviour. MetaReg is closer to biological reality because it can express intermediate regulator concentrations and accommodate probabilities, but requires more knowledge about the network and is limited to analysis of steady states. Petri nets can reveal finer detail to metabolic and signalling networks, and can therefore be used to describe integrated regulatory and metabolic/signalling networks and handle some dynamics. The analysis Petri nets offer is still qualitative. Regulated flux balance analysis (rFBA) produces metabolic predictions that can be compared to experimental measurements, but requires biochemical knowledge and is more challenging to analyse. Linear differential equations can model and predict experimentally observed concentrations of regulatory entities, and possess more detailed dynamics than the former models. General ordinary differential equations (ODEs) are more consistent with biochemical mechanisms than linear ODEs, but are harder to analyse. Single-molecule level models, the most detailed, can capture stochasticity, but are computationally expensive. To deal with this computational burden, approximations to stochastic simulation algorithms (SSAs) were developed, which sacrifice some detail for better performance. Methods that infer particular properties (not shown) can fall anywhere on the left half of the scale, depending on the properties of the chosen model. 
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